Brookhaven Lab R&D on Capacitively Coupled LAPPDs with 2D Pixelated Readout Planes for Ring Imaging Cherenkov Detectors

Alexander Kiselev (BNL)

Ad hoc LAPPD workshop March 21, 2022 (via Zoom)

Introduction

Gen II: capacitively coupled LAPPD

Gen I (DC-coupled) LAPPD

Gen II (capacitively coupled) LAPPD

- ~1 mm spatial resolution, ~50 ps TTS SPE
- Good compromise between the number of electronics channels and spatial coverage.

- **User-defined anode pattern design** for balancing rate, spatial resolution and electronics channel count.
- <1 mm spatial resolution, no substantial degradation in time resolution.

Current status: neither DC- nor AC-coupled LAPPDs are available in finely pixelated *configurations* required for RICH applications

Gen II: capacitively coupled LAPPD

- Conventional high-resolution timing sensors for single photon detection such as MaPMTs, [MCP-PMTs,] SiPMs:
- Using capacitively coupled LAPPDs one can do it differently:

One photon – one pixel hit

Manufacturer defined (square) pixels

Spatial resolution σ is limited by ~pitch/V12

Channel count for σ ~ 1mm (~3.5 mm pixels) is ~ 10⁵ / m²

One photon – a multi-pixel cluster

3 mm pixels, rms ~ 3.5 mm [BNL test stand data]

User defined pixel readout board

Spatial resolution σ can be times higher than pitch/V12

Channel count for σ ~ 1mm resolution: perhaps ~ 10⁴ / m²

BNL R&D effort: Gen II pixellation via custom readout board design

Primary target of this R&D: EIC general-purpose detectors

EIC: Electron-Ion Collider @ Brookhaven Lab

EIC physics detector proposal selection	Concluded few weeks ago
DOE CD-3 (Approve start of construction)	End of FY24
ECCE PID subsystems ready for installation	End of FY28

- LAPPDs are supposed to
 - be more cost-efficient than MCP-PMTs
 - > provide better timing and have (much) smaller dark noise rate than SiPMs

Barrel DIRC likely requires "Gen I" MCP-PMT type

	Default option	Single photon time resolution	Spatial resolution equivalent	Sensor area
E-endcap mRICH	SiPMs	best possible	~3mm pixels	64 ~10x10 cm ² spots
Barrel DIRC	MCP-PMTs	<100 ps	~3mm pixels	~0.65 m ² total
H-endcap dRICH	SiPMs	~100 ps	~3mm pixels	~3.10 m ² total

Lab measurements at Brookhaven

- Light-tight enclosure
- Remotely controlled XYZ-stages
- 420nm pulsed "picosecond" laser (spot size <100 μm)

Laser spot as measured by a CMOS camera

- Up to 320 DRS4 channels (V1742 digitizers; 5 GS/s)
- A variety of multi-pattern pixelated readout boards
- MCX to high-density Samtec adapter cards

Custom 3D printed LAPPD enclosure

Several iterations of multi-pattern readout boards

PCB stack details & cross-talk evaluation

in Y-direction)

are routed

Offset Coplanar Waveguide 1B1A

Substrate 1 Height
Substrate 1 Dielectric
Substrate 2 Height
Substrate 2 Dielectric
Lower Trace Width
Upper Trace Width
Ground Strip Separation
Trace Thickness

- Multi-layer stack-up; through vias; isolated traces
- Worst case X-talk ~few % level

4mm square pixels; 5x6 field; 50ns range waveforms

H1

Er1

Er2

D1

T1

Spatial resolution with the 3mm square pixels

- "Single-photon" mode
 - ~10 mV signals

- Gen II LAPPD tile #97 provided by Incom
 - 2mm thick ceramic base

Photo cathode	2375 V
MCP#1 top	2300 V
MCP#1 bottom	1375 V
MCP#2 top	1175 V
MCP#2 bottom	250 V

8x8 field with 3mm pixels, connected to a pair of V1742s

Linearity scan along diagonal direction shown

Typical single photon cluster has RMS ~ 3.5 mm

2D zigzag pixels with a 6mm pitch

Beam test at Fermilab in June 2021

(BNL, Incom Inc., Argonne, GSU, Stony Brook & other groups)

Experimental setup (Fermilab Test Beam Facility)

Pixel pattern & accumulated single photon XY-coordinates

Cherenkov ring radius resolution

 Yes, one can measure single Cherenkov photons with sub-mm spatial resolution using pixelated Gen II LAPPDs!

Paradigm change in the Cherenkov ring imaging data analysis: overlapping clusters rather than single pixel hits

Summary and outlook

- Proof of principle measurements confirming feasibility of Gen II LAPPD use for single photon detection in Cherenkov imaging applications are performed in the test bench setup and with a particle beam
- Several ideas for readout board optimization were tried out, in terms of the spatial resolution performance, cross talk suppression and instrumented channel count optimization
- Further work:
 - Additional readout board optimization for high resolution timing
 - Perhaps more advanced pixellation schemes (redundant strip configurations, mixed timing & spatial coordinate measurement geometries, etc.)
 - Practical applications in the scope of EIC detector R&D program
 - On-board electronics integration
 - TOF PET application?